Knot commensurability and the Berge conjecture

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the generalized Berge sorting conjecture

In 1966, Claude Berge proposed the following sorting problem. Given a string of n alternating white and black pegs, rearrange the pegs into a string consisting of ⌈n 2 ⌉ white pegs followed immediately by ⌊n 2 ⌋ black pegs (or vice versa) using only moves which take 2 adjacent pegs to 2 vacant adjacent holes. Berge’s original question was generalized by considering the same sorting problem usin...

متن کامل

Perfect matching covering, the Berge-Fulkerson conjecture, and the Fan-Raspaud conjecture

Let m∗t be the largest rational number such that every bridgeless cubic graph G associated with a positiveweightω has t perfectmatchings {M1, . . . ,Mt}withω(∪i=1 Mi) ≥ m ∗ t ω(G). It is conjectured in this paper that m∗3 = 4 5 , m ∗ 4 = 14 15 , and m ∗ 5 = 1, which are called the weighted PM-covering conjectures. The counterparts of this new invariant m∗t and conjectures for unweighted cubic g...

متن کامل

COMMENSURABILITY CLASSES OF (−2, 3, n) PRETZEL KNOT COMPLEMENTS

Let K be a hyperbolic (−2, 3, n) pretzel knot and M = S \ K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M . Indeed, if n 6= 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots.

متن کامل

Unions of Perfect Matchings in Cubic Graphs and Implications of the Berge-Fulkerson Conjecture

The Berge-Fulkerson Conjecture states that every cubic bridgeless graph has six perfect matchings such that every edge of the graph is in exactly two of the perfect matchings. If the Berge-Fulkerson Conjecture is true, then what can we say about the proportion of edges of a cubic bridgeless graph that can be covered by k of its perfect matchings? This is the question we address in this paper. W...

متن کامل

Knot state asymptotics I AJ Conjecture and abelian representations

Consider the Chern-Simons topological quantum field theory with gauge group SU2 and level k. Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter vector space being isomorphic to the geometric quantization of the SU2-character variety of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2012

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2012.16.625